Alle Algorithmen in Python

    Tiefensuche in Python

    Gepostet: , Zuletzt aktualisiert:

    Der Tiefensuche-Algorithmus (Depth-First Search, DFS) ist ein Algorithmus, mit dem ein Knoten in einem Baum gefunden wird. Dies bedeutet, dass der Algorithmus bei einer gegebenen Baumdatenstruktur den ersten Knoten in diesem Baum zurückgibt, der der angegebenen Bedingung entspricht (d. H. Gleich einem Wert ist). Die Kanten müssen ungewichtet sein. Dieser Algorithmus kann auch mit ungewichteten Diagrammen arbeiten, wenn ein Mechanismus zum Verfolgen bereits besuchter Knoten hinzugefügt wird.

    Zur Implementierung

    Größter gemeinsamer Teiler in Python

    Gepostet: , Zuletzt aktualisiert:

    Der größte gemeinsame Teiler zweier Zahlen (in diesem Fall a und b) ist die größte Zahl, durch die beide Zahlen ohne Rest geteilt werden können. Dieser größte gemeinsame Divisor (Teiler)-Algorithmus, der als euklidischer Algorithmus bezeichnet wird, bestimmt diese Zahl. Der größte gemeinsame Teiler wird auch oft als gcd abgekürzt.

    Zur Implementierung

    Iterative Deepening A Star in Python

    Gepostet: , Zuletzt aktualisiert:

    Der A-Star Algorithmus mit iterativer Vertiefung (IDA & ast;) ist ein Algorithmus, der verwendet wird, um das Problem des kürzesten Pfades in einem Baum zu lösen, kann jedoch modifiziert werden, um Graphen (d. H. Zyklen) zu handhaben. Es baut auf der ID-DFS (Iterative Deepening Depth-First Search) auf, indem eine Heuristik hinzugefügt wird, um nur relevante Knoten zu untersuchen.

    Zur Implementierung

    Dijkstra in Python

    Gepostet: , Zuletzt aktualisiert:

    Der Dijkstra-Algorithmus ist ein Algorithmus, der verwendet wird, um das Problem des kürzesten Pfades in einem Diagramm zu lösen. Dies bedeutet, dass der Dijkstra-Algorithmus bei einer Anzahl von Knoten und den Kanten zwischen ihnen sowie der “Länge” der Kanten (als “Gewicht” bezeichnet) den kürzesten Weg vom angegebenen Startknoten zu allen anderen Knoten findet.

    Zur Implementierung

    Iterative Tiefensuche in Python

    Gepostet: , Zuletzt aktualisiert:

    Der Iterative Tiefensuche-Algorithmus (Iterative Deepening Depth-First Search, ID-DFS) ist ein Algorithmus, mit dem ein Knoten in einem Baum gefunden wird. Dies bedeutet, dass der Algorithmus bei einer Baumdatenstruktur den ersten Knoten in diesem Baum zurückgibt, der der angegebenen Bedingung entspricht. Die Kanten müssen ungewichtet sein. Dieser Algorithmus kann auch mit ungewichteten Diagrammen arbeiten, wenn ein Mechanismus zum Verfolgen bereits besuchter Knoten hinzugefügt wurde.

    Zur Implementierung

    Punkt-in-Polygon in Python

    Gepostet: , Zuletzt aktualisiert:

    Das PIP-Problem (Punkt-in-Polygon) ist das Problem, zu bestimmen, ob ein Punkt ein beliebiges Polygon ist. Dies mag für ein einfaches Polygon wie ein Quadrat oder ein Dreieck trivial klingen, wird jedoch mit komplexeren Polygonen wie dem im folgenden Beispiel komplexer. In diesem Beitrag wird der gerade-ungerade Algorithmus, auch Kreuzungsnummernalgorithmus oder Jordan-Algorithmus genannt (da er mit dem Jordan-Kurvensatz bewiesen werden kann) eingeführt.

    Zur Implementierung

    A Star in Python

    Gepostet: , Zuletzt aktualisiert:

    Der A-Stern-Algorithmus (A & ast;) ist ein Algorithmus, der verwendet wird, um das Problem des kürzesten Pfades in einem Graphen zu lösen. Dies bedeutet, dass bei einer Anzahl von Knoten und den Kanten zwischen ihnen sowie der “Länge” der Kanten (als “Gewicht” bezeichnet) und einer Heuristik (dazu später mehr) die A & ast; Der Algorithmus findet den kürzesten Weg vom angegebenen Startknoten zu allen anderen Knoten.

    Zur Implementierung

    Breitensuche in Python

    Gepostet: , Zuletzt aktualisiert:

    Der Breitensuchalgorithmus (Breadth-first-search, BFS) ist ein Algorithmus, der verwendet wird, um das Problem des kürzesten Pfades in einem Graphen ohne Kantengewichte zu lösen (d.h. ein Diagramm, in dem alle Knoten den gleichen “Abstand” voneinander haben und entweder verbunden sind oder nicht). Dies bedeutet, dass bei einer Anzahl von Knoten und den Kanten zwischen ihnen der Breitensuchalgorithmus den kürzesten Weg vom angegebenen Startknoten zu allen anderen Knoten findet.

    Zur Implementierung

Über die Programmiersprache:

Python

Das Python-Logo

Python™ ist eine interpretierte Sprache, die für viele Zwecke verwendet wird, von der eingebetteten Programmierung bis zur Webentwicklung, wobei einer der größten Anwendungsfälle die Datenwissenschaft ist.

In Python zu “Hello World”

Das Wichtigste zuerst - so können Sie Ihre erste Codezeile in Python ausführen:

  1. Laden Sie die neueste Version von Python von python.org herunter und installieren Sie sie. Sie können auch eine frühere Version herunterladen, wenn Ihr Anwendungsfall dies erfordert. Viele Technologien erfordern dies aufgrund der mit Python 3 eingeführten Änderungen weiterhin.
  2. Öffnen Sie ein Terminal, stellen Sie sicher, dass der Befehl “python” oder “python3” funktioniert und dass der Befehl, den Sie verwenden, sich auf die Version bezieht, die Sie gerade installiert haben, indem Sie “python3 —version” oder “python —version” ausführen. Wenn der Fehler “Befehl nicht gefunden” (oder ähnliches) angezeigt wird, starten Sie die Befehlszeile, und, falls dies nicht hilft, Ihren Computer neu. Wenn das Problem weiterhin besteht, finden Sie hier einige hilfreiche Fragen zu StackOverflow für Windows, Mac und Linux.
  3. Sobald dies funktioniert, können Sie das folgende Snippet ausführen: print("Hello World"). Sie haben zwei Möglichkeiten, dies auszuführen: 3.1 Führen Sie “python” in der Befehlszeile aus, fügen Sie einfach das Code-Snippet ein und drücken Sie die Eingabetaste (Drücken Sie “STRG + D” oder schreiben Sie “exit ()” und drücken Sie die Eingabetaste, um das Programm zu beenden). 3.2 Speichern Sie das Snippet in einer Datei und nennen Sie es etwas, das mit “.py” endet, z.B. hello_world.py und führepython path / to / hello_world.py aus. Tipp: Verwenden Sie den Befehl ls (dir in Windows), um herauszufinden, welche Dateien sich in dem Ordner befinden, in dem sich Ihre Befehlszeile gerade befindet.

Das wars schon! Beachten Sie, dass das Drucken von etwas auf die Konsole in Python nur eine einzige Zeile ist - diese niedrige Eintrittsbarriere und das Fehlen von erforderlichem Boilerplate-Code machen einen großen Teil der Attraktivität von Python aus.

Grundlagen in Python

Um in Python implementierte Algorithmen und Technologien zu verstehen, muss man zunächst verstehen, wie grundlegende Programmierkonzepte in dieser bestimmten Sprache aussehen.

Variablen und Arithmetik

Variablen in Python sind wirklich einfach. Sie müssen weder einen Datentyp deklarieren noch deklarieren, dass Sie eine Variable definieren. Python weiß das implizit.

a = 1
b = {'c':2}

print(a + b['c']) # prints 3

Arrays

Das Arbeiten mit Arrays ist in Python ähnlich einfach:

arr = ["Hello", "World"]

print(arr[0]) # Hello
print(arr[1]) # World
# print(arr[2]) # IndexError

arr.append("!")

print(arr[2]) # !

Wie diejenigen von Ihnen, die mit anderen Programmiersprachen wie Java vertraut sind, möglicherweise bereits bemerkt haben, handelt es sich nicht um native Arrays, sondern um Listen, die wie Arrays gekleidet sind. Dies wird durch die Tatsache deutlich, dass keine Größe angegeben werden muss und Elemente nach Belieben angehängt werden können. Tatsächlich druckt print (type (arr)) <class ‘list’> `. Dies bedeutet, dass Arrays in Python erheblich langsamer sind als in Programmiersprachen niedrigerer Ebene. Es gibt jedoch Pakete wie numpy, die echte Arrays implementieren, die erheblich schneller sind.

Bedingungen

Wie die meisten Programmiersprachen kann Python “if-else”-Anweisungen ausführen:

value = 1
if value==1:
    print("Value is 1")
elif value==2:
    print("Value is 2")
else:
    print("Value is something else")

Python hat jedoch keine “case”-Anweisungen, die andere Sprachen wie Java haben. Meiner Meinung nach kann dies durch die Einfachheit der “if”-Anweisungen entschuldigt werden, die den “syntaktischen Zucker” von “case” -Anweisungen überflüssig machen.

Schleifen

Python unterstützt sowohl “for” - als auch “while” -Schleifen sowie “break” - und “continue” -Anweisungen. Es gibt zwar keine “do-while” -Schleifen, aber eine Reihe von integrierten Funktionen, die das Schleifen sehr bequem machen, wie “enumerate” oder “range”. Hier sind einige Beispiele:

value = 10
while value > 0:
    print(value)
    value -= 1

for index, character in enumerate("banana"):
    print("The %d-th letter is a %s" % (index + 1, character))

Beachten Sie, dass Python nicht die gemeinsame Iteratorvariablensyntax anderer Sprachen verwendet (z. B. for (int i = 0; i <arr.length; i ++) in Java) - hierfür kann die Funktion enumerate verwendet werden.

Funktionen

Funktionen in Python sind einfach zu definieren und erfordern zum Guten oder Schlechten keine Angabe von Rückgabe- oder Argumenttypen. Optional kann ein Standardwert für Argumente angegeben werden:

def print_something(something="Hello World"):
    print(something)
    return "Success"

print_something()
print(print_something("banana"))

 (Dies druckt “Hallo Welt”, “Banane” und dann “Erfolg”)

Syntax

Sie haben vielleicht bemerkt, dass Python keine geschweiften Klammern ({}) verwendet, um Codeblöcke in Bedingungen, Schleifen, Funktionen usw. zu umgeben. Dies liegt daran, dass Python als Teil seiner Syntax von Einrückungen (Leerzeichen) abhängt. Während Sie in Java beliebig viele Leerzeichen (Leerzeichen, Tabulatoren, Zeilenumbrüche) hinzufügen und löschen können, ohne das Programm zu ändern, wird die Syntax in Python dadurch unterbrochen. Dies bedeutet auch, dass keine Semikolons erforderlich sind, was in anderen Sprachen ein häufiger Syntaxfehler ist.

Fortgeschrittene Kenntnisse in Python

Python wurde erstmals 1990 veröffentlicht und ist ein Multi-Paradigma. Das bedeutet, dass es in erster Linie zwingend und funktional ist, aber auch objektorientierte und reflektierende Elemente enthält. Es ist dynamisch typisiert, bietet jedoch seit Version 3.5 Syntax für die schrittweise Eingabe. Für weitere Informationen hat Python einen großartigen Artikel Wikipedia.