Point in Polygon in Java

Posted: , Last Updated:

package point_in_polygon.java;

/**
 * Used to perform the Raycasting Algorithm to find out whether a point is in a given polygon.
 */
public class PointInPolygon {
    /**
     * Performs the even-odd-rule Algorithm to find out whether a point is in a given polygon.
     * This runs in O(n) where n is the number of edges of the polygon.
     *
     * @param polygon an array representation of the polygon where polygon[i][0] is the x Value of the i-th point and polygon[i][1] is the y Value.
     * @param point   an array representation of the point where point[0] is its x Value and point[1] is its y Value
     * @return whether the point is in the polygon (not on the edge, just turn < into <= and > into >= for that)
     */
    public static boolean pointInPolygon(int[][] polygon, int[] point) {
        //A point is in a polygon if a line from the point to infinity crosses the polygon an odd number of times
        boolean odd = false;
        // int totalCrosses = 0; // this is just used for debugging
        //For each edge (In this case for each point of the polygon and the previous one)
        for (int i = 0, j = polygon.length - 1; i < polygon.length; i++) { // Starting with the edge from the last to the first node
            //If a line from the point into infinity crosses this edge
            if (((polygon[i][1] > point[1]) != (polygon[j][1] > point[1])) // One point needs to be above, one below our y coordinate
                    // ...and the edge doesn't cross our Y corrdinate before our x coordinate (but between our x coordinate and infinity)
                    && (point[0] < (polygon[j][0] - polygon[i][0]) * (point[1] - polygon[i][1]) / (polygon[j][1] - polygon[i][1]) + polygon[i][0])) {
                // Invert odd
                // System.out.println("Point crosses edge " + (j + 1));
                // totalCrosses++;
                odd = !odd;
            }
            //else {System.out.println("Point does not cross edge " + (j + 1));}
            j = i;
        }
        // System.out.println("Total number of crossings: " + totalCrosses);
        //If the number of crossings was odd, the point is in the polygon
        return odd;
    }
}

About the algorithm and language used in this code snippet:

Point in Polygon Algorithm

The Point in Polygon (PIP) problem is the problem of determining whether a point is any arbitrary polygon. This might sound trivial for a simple polygon like a square or a triangle, but gets more complex with more complex polygons like the one in the example below. In this post, the even-odd algorithm, also called crossing number algorithm or Jordan’s algorithm (since it can be proven using the Jordan curve theorem), will be introduced.

Description of the Algorithm

The basic principle behind the Even-odd aka. Jordan aka. Cross Number Algorithm is to count the number of times a line from the point in question (in any, arbitrary direction) crosses any edge of the polygon. This line will always be outside of the polygon at it’s “end” in infinity, so if it is inside the polygon at the start (the point in question), it will have to leave the polygon at some point, crossing some edge. It can re-enter the polygon (see the example below), but it always has to leave again, making the total number of crossings uneven if the point is in the polygon. The opposite is also true; if the number of crossings is even, the point is always outside of the polygon. This is the above mentioned Jordan’s curve theorem.

The algorithm checks every edge of the polygon in a loop to determine if the line from the point to infinity crosses it. In the example below, this line is drawn from the point to infinity to the right, but it can be any direction.

The steps are:

  1. For each edge in the polygon:
  2. If the edge crosses the imaginary line from the point to infinity, increase a counter.
  3. At then end, if the counter is uneven, return true. Else, return false.

A simple boolean variable that is inverted every time a crossing is found is also possible.

Example of the Algorithm

Consider the following polygon with 8 edges and two points for which we want to determine whether they are in the polygon:

Point in Polygon Jordan (Even-odd) Algorithm example polygon and points

The steps the algorithm performs on this polygon to determine whether the first (green) point is in the polygon are, starting from the first edge:

  1. Green Point crosses edge 8
  2. Green Point does not cross edge 1
  3. Green Point crosses edge 2
  4. Green Point does not cross edge 3
  5. Green Point crosses edge 4
  6. Green Point crosses edge 5
  7. Green Point does not cross edge 6
  8. Green Point does not cross edge 7
  9. Total number of crossings: 4
  10. Even number of edge crossings, therefore the point is not in the polygon

The steps the algorithm performs on this polygon to determine whether the second (red) point is in the polygon are, starting from the first edge:

  1. Red Point does not cross edge 8
  2. Red Point does not cross edge 1
  3. Red Point does not cross edge 2
  4. Red Point does not cross edge 3
  5. Red Point does not cross edge 4
  6. Red Point crosses edge 5
  7. Red Point does not cross edge 6
  8. Red Point does not cross edge 7
  9. Total number of crossings: 1
  10. Uneven number of edge crossings, therefore the point is in the polygon

Runtime Complexity of the Algorithm

The runtime complexity of the Jordan Algorithm aka. Crossing Number Algorithm aka. Even-Odd Algorithm to solve the point-in-polygon problem for a single point is linear with respect to the number of edges. This is evident by looking at the code, which contains a single loop over the edges, with no recursion or further function calls or loops.

Formally the runtime is O(|V|), |V|:=number of edges in the polygon.

Space Complexity of the Algorithm

The space complexity is also linear w.r.t. the number of edges, since only fixed-size variables need to be stored in addition to the polygon. Additionally, the algorithm can be implemented on-line, meaning there is no need to look at past edges during the loop, so they can be evicted from memory (or comparable performance improvement measures).

Java

The Java Logo

Java™ is a compiled language used for many purposes, ranging from embedded systems, UI-applications to web servers.

Getting to “Hello World” in Java

The most important things first - here’s how you can run your first line of code in Java.

  1. Download and install the latest version of Java from java.com. You can also download an earlier version if your use case requires it.
  2. Open a terminal, make sure the javac and javac commands are working, and that the command your’re going to be using is referring to the version you just installed by running java -version. If you’re getting a “command not found” error (or similar), try restarting your command line, and, if that doesn’t help, your computer. If the issue persists, here are some helpful StackOverflow questions for each platform:

  3. As soon as that’s working, copy the following snippet into a file named HelloWorld.java:

    class HelloWorld {
    public static void main(String[] args) {
        // Paste any following code snippets here.
        System.out.println("Hello World");
    }
    }
  4. Change directory by typing cd path/to/HelloWorld, then run javac HelloWorld.java to compile the file (which creates the bytecode), then run java HelloWorld (without the .java ending). This should print “Hello World” to your Terminal.

That’s it! Notice that the entry barrier is a little higher with Java than it is with e.g. Python - but Java is much faster and, in my experience, tends to have fewer bugs in large projects due to strong typing and other factors.

Fundamentals in Java

To understand algorithms and technologies implemented in Java, one first needs to understand what basic programming concepts look like in this particular language. Each of the following snippets should be surrounded by the boilerplate code of the hello world example and should be compiled and run using the commands mentioned above.

Variables and Arithmetic

Variables in Java are statically typed, meaning the content of a variable needs to be specified when writing the code. The datatype for whole numbers, for example is int. Numbers with decimal places are typed float or double depending on the required precision. The type for text ist String.

int number = 5;
double decimalNumber = 3.25;
double result = number * decimalNumber;
String callout = "The number is ";
// In this instance, the values are concatenated rather than added because one of them is a String.
System.out.println(callout + result);

Arrays

Arrays in Java are real arrays (as opposed to e.g. Python where they’re implemented as lists). The implications of that are that the size needs to be set when they are created and cannot be changed, but also that they are more efficient in Java than they are in Python.

int[] integers = new int[5];
integers[3] = 12; // Assigning values to positions in the array
// integers[4] is 0, integers[6] would give IndexOutOfBoundsException
String[] strings = {"Hello", "World"}; // Array initialization with initial values
System.out.println(strings[0] + integers[3]); // Prints "Hello12"

Conditions

Just like most programming languages, Java can do if-else statements. Additionally, Java can also do switch-case statements.

int value = 5;
if(value == 5){
    System.out.println("Value is 5");
} else if(value < 5){
    System.out.println("Value is less than 5");
} else {
    System.out.println("Value is something else");
}

switch (value){
    case 1:
        System.out.println("Value is 1");
        break; // Don't go further down the cases
    case 2:
        System.out.println("Value is 2");
        break; // Don't go further down the cases
    case 3:
        System.out.println("Value is 3");
        break; // Don't go further down the cases
    case 4:
        System.out.println("Value is 4");
        break; // Don't go further down the cases
    case 5:
        System.out.println("Value is 5");
        break; // Don't go further down the cases
    default:
        System.out.println("Value is something else");
}

The above Java code will print “Value is 5” twice.

Loops

Java supports for, while as well as do while loops. break and continue statements are also supported. The below example illustrates the differences:

int value = 2;
for (int i = 0; i < value; i++) {
    System.out.println(i);
}
while (value > 0) {
    System.out.println(value);
    value--;
}
do {
    System.out.println(value);
    value--;
} while (value > 0);

This will print the following to the terminal:

0
1
2
1
0

Note the last 0: it is printed because in the do-while-loop, compared to the while-loop. the code block is executed at least once before the condition is checked.

Functions

Functions in Java can be part of a class, or of an object of a class. For more information on object oriented programming I recommend the w3schools course. Here is a minimal example of a function as part of a class (also called a static function):

class HelloWorld {
    public static void main(String[] args) {
        System.out.println(addNumbers(3, 4));
    }

    public static int addNumbers(int numberOne, int numberTwo) {
        return numberOne + numberTwo;
    }
}

And here’s an example of calling a function of an object of a class:

class HelloWorld {
    public static void main(String[] args) {
        System.out.println(new HelloWorld().addNumbers(3, 4));
    }

    public int addNumbers(int numberOne, int numberTwo) {
        return numberOne + numberTwo;
    }
}

Note how the first example uses the static keyword, and the second example needs to instantiate on object of the class before in can call the function of that object. These are some of the differences in class methods and object functions.

Syntax

Java requires the use of curly brackets ({}) to surround code blocks in conditions, loops, functions etc.; It also requires semicolons at then end of statements. While this can lead to some annoying syntax errors, it also means the use of whitespace for preferred formatting (e.g. indentation of code pieces) does not affect the code.

Advanced Knowledge of Java

Java was first released in 1995 and is multi-paradigm, meaning while it is primarily object-oriented, it also has functional and reflective elements. It’s statically typed, but offers some amount of dynamic typing in recent versions. For more information, Java has a great Wikipedia) article.